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A B S T R A C T   

This study proposes a hierarchical pattern recognition method for tourism demand forecasting. The hierarchy 
consists of three tiers: the first tier recognizes the calendar pattern of tourism demand, identifying work days and 
holidays and integrating “floating holidays.” The second tier recognizes the tourism demand pattern in the data 
stream for different calendar pattern groups. The third tier generates forecasts of future tourism demand. Evi
dence from daily tourist visits to three attractions in China shows that the proposed method is effective in 
forecasting daily tourism demand. Moreover, the treatment of “floating holidays” turns out to be more effective 
and flexible than the commonly adopted dummy variable approach.   

1. Introduction 

In the past decade, the tourism industry has made a major contri
bution to the global economy. According to UNWTO (2019), the total 
volume of international tourism exports exceeded US$ 1.7 trillion in 
2018, after nine consecutive years of sustained growth, accounting for 
7% of global exports and 29% of global service exports. The significant 
role of the tourism industry in today’s economy suggests the need for 
comprehensive and accurate analysis of tourism demand. In recent 
years, tourism forecasting has received more attention from the industry 
(Li & Wu, 2019). From an aggregate perspective, accurate tourism 
forecasts can assist governments and destination management offices in 
strategic management, regulation, and infrastructure investment. At a 
disaggregate level, accurate forecast of visitor flows to a tourism site can 
provide tourism-related businesses with useful information for pricing, 
operation strategy, and crowd control (e.g. Chen, Bloomfield, & Fu, 
2003). 

Forecasts of tourism demand are primarily based on the analysis of 
consecutive measurements of tourism demand and other relevant evi
dence (see Song, Qiu, and Park (2019) for a comprehensive review). The 
frequency of tourism demand series can be as low as annually or as high 
as daily. Forecasting annual tourism demand provides interested parties 
with general trends and cycles, whereas the analysis of high-frequency 
data can be useful for precision marketing and management. Among 

the features investigated in the tourism demand forecast literature, 
seasonality stands out as a distinctive characteristic of tourism demand, 
with a major impact on tourism businesses’ planning and operation 
(Chen, Li, Wu, & Shen, 2019). Tourism demand tends to follow regular 
patterns, such as low and peak seasons at the quarterly/monthly level 
and weekends and holidays at the daily level. 

The analysis of seasonality becomes more complicated when the 
frequency of data increases due to the interlocking of different season
ality patterns at various frequencies. In addition, as argued by Hyndman 
(2013), it is difficult to treat “moving events” such as Easter or Chinese 
New Year when working with daily data. These holidays do not occur at 
the same time every year and may include weekends. In other words, 
these holidays “float” on the calendar, leading to irregular seasonality 
patterns in daily tourism demand data. Since enjoying holidays is 
perceived as one of the major factors driving travelers to choose a 
destination (Heung, Qu, & Chu, 2001), the irregular seasonality patterns 
would have a significant impact on the accuracy of tourism demand 
forecasts. Although a dummy variable approach has been proposed to 
treat moving holidays (Hyndman, 2013), Enders and Li (2015) question 
its validity due to its subjectivity and inflexibility. 

This study proposes an innovative hierarchical pattern recognition 
(HPR) approach for forecasting daily tourism demand for attractions. 
High frequency forecasting, such as daily, and high frequency season
ality identification are important for the regular and routine operation 
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and management of attractions. For example, the short-run forecasting 
provides the attraction management office with relevant information to 
guide their human resource allocation and promotion strategies. The 
proposed method includes three tiers in which both floating holidays 
and the overlapping effect of different levels of seasonality are consid
ered. The first tier recognizes the calendar patterns of the data stream 
and identifies work days and holidays (including weekends and floating 
holidays). The data stream is classified into different groups according to 
the calendar pattern. This tier provides the model with the flexibility to 
deal with floating holidays that occur irregularly in the calendar. The 
second tier recognizes the patterns of tourism demand trends at various 
seasonal levels in the historical pattern pool within the same calendar 
pattern group. This tier generates tourism demand forecasts at different 
seasonal levels and for different calendar patterns. The third tier collates 
the forecasts generated in the second hierarchy and produces the final 
forecast of tourism demand. The forecast generated in this tier integrates 
patterns from interlocking seasons and holidays. The proposed approach 
is tested with daily tourist arrival data from three famous attractions in 
China (Jiuzhaigou Valley, Kulangsu, and Siguniang Mountain). Six 
benchmark models (weekly naïve, simple k-NN, SARIMA, SARIMAX, 
ETS, and TBATS) are used for forecast performance evaluation and 
comparison. Forecasting horizons from one to 14 days ahead are eval
uated separately, and MAPE and MASE are used to measure accuracy. 

The rest of this study is structured as follows. Section 2 reviews the 
related literature on tourism demand forecasting and pattern recogni
tion. Section 3 explains the proposed HPR approach in detail, followed 
by a brief introduction to the benchmark methods. Data and forecasting 
results are reported in Section 4, and the accuracy of the HPR approach 
is compared with the benchmarks. Section 5 concludes the study with a 
discussion of limitations and future directions. 

2. Literature review 

2.1. Tourism demand forecasting 

Tourism products, such as unused hotel rooms and unoccupied 
airline seats, are impossible to stockpile. This means that tourism de
mand forecasting is essential for the government and industry. Indeed, 
an extensive tourism demand forecasting literature has developed in the 
past few decades. A literature review by Song et al. (2019) shows that 
from 1968 to 2018, over 600 studies investigated the modeling and 
forecasting of tourism demand, and their results have been adopted by 
governments, destination management organizations (DMOs), and in
dustrial practitioners for managerial and strategic purposes. The ma
jority of tourism demand forecast studies adopt either one or several 
methods for prediction, such as time series models, econometric 
methods, AI-based techniques, and subjective approaches. 

Univariate time series methods extrapolate historical tourism de
mand series to generate forecasts (Chu, 2009; Wu, Song, & Shen, 2017). 
It is well known that tourism demand series can be associated with long 
and short memory series reflecting cyclical and seasonal changes in 
tourist behavior (Gil-Alana, 2005; Karlaftis & Vlahogianni, 2009; 
Gil-Alana, Mudida, & de Gracia, 2014; Sadaei, Guimarães, da Silva, Lee, 
& Eslami, 2017). Predictions of future tourism demand can be generated 
according to established memory patterns and data frequency in existing 
tourism demand series. The most frequently adopted univariate time 
series models are the no-change model (Naïve I), constant growth rate 
model (Naïve II), exponential smoothing (ES) model, Box-Jenkins 
models (autoregressive moving average (ARMA) family models), and 
structural time series (STS) models (Song et al., 2019; Wu et al., 2017). 
Univariate time series models have been found to provide reliable 
forecasts of tourism demand over the years. However, the impact of 
economic variables on tourism demand cannot be captured by univari
ate time series models. 

Multivariate econometric methods complement univariate time se
ries models by incorporating causal variables (Onafowora & Owoye, 

2012; Song & Li, 2008; Wu et al., 2017). In addition to forecasting, 
econometric methods illustrate the relationship between tourism de
mand and causal variables, such as tourist income, tourism prices, 
substitute prices, exchange rates, transportation costs, marketing ex
penses, and climate change (Dritsakis, 2004; Goh, 2012; Law, 2000, 
2001; Law & Au, 1999; Li, Goh, Hung, & Chen, 2018; Li, Song, & Li, 
2017; Li, Song, & Witt, 2005; Lim, 1999; Lise & Tol, 2002; Song & Li, 
2008; Wu, Cao, Wen, & Song, 2020). Due to their ability to develop 
econometric systems that link tourism demand and key economic fac
tors, and to generate reliable forecasts, econometric methods have 
become popular in the tourism demand literature in recent decades 
(Song et al., 2019). 

Due to the exponential development in computing technology, AI- 
based techniques have received substantial attention in various scien
tific disciplines. In the tourism demand forecast context, AI-based 
techniques aim to establish non-linear connections between tourism 
demand, its lagged values, and other explanatory variables (Claveria, 
Monte, & Torra, 2015; Kon & Turner, 2005; Law, 2000; Law & Au, 1999; 
Palmer, Montano, & Sesé, 2006). Artificial neural networks (Law, 2000; 
Law & Au, 1999), support vector regression models (Chen & Wang, 
2007), and Gaussian> process regression (Wu, Law, & Xu, 2012) are 
typical AI-based techniques found in the tourism demand forecasting 
literature. AI-based techniques are sometimes referred to as a “black 
box” (Zhang, Patuwo, & Hu, 1998), due to the lack of theoretical 
foundation for the estimation process. Nevertheless, the demand for 
high-accuracy forecasting has made AI-based techniques very popular in 
the tourism demand forecast literature since 2000 (Song et al., 2019). 

Subjective forecasts of tourism demand are usually generated on the 
basis of experts’ experience and opinions. This approach was adopted 
quite often before 1990 (Song et al. 2019), but has lost popularity due to 
the development of computational techniques and the evolution of time 
series and econometric models. More recently, it has been shown that 
judgmental approaches can be combined with other quantitative fore
casting models to improve forecast accuracy (Lin, Goodwin, & Song, 
2014; Tideswell, Mules, & Faulkner, 2001). 

In the tourism demand forecasting literature, regardless of the 
method adopted, seasonality is acknowledged as a key feature of tourism 
demand series (Song & Li, 2008). Seasonality refers to the phenomenon 
in which tourist flows tend to have a similar pattern for the same period 
across different years. The description of seasonality relates to the fre
quency of the data stream. Low and peak seasons are usually captured at 
monthly or quarterly frequency, whereas the influence of weekends and 
specific holidays can only be revealed at daily frequency. The treatment 
of seasonality in daily data can be tricky, as a long enough daily data 
stream can incorporate not only popularity fluctuations from one season 
to another, but also the calendar patterns of weekends and holidays. 
Hyndman (2013) further highlights that floating holidays pose diffi
culties in treating daily data. Holidays such as Thanksgiving, Easter, and 
Chinese New Year appear at different times in the calendar each year, 
and actual vacations may also include weekends around these floating 
holidays. Such “floating holidays” exhibit more complicated and irreg
ular seasonality patterns. In time series analysis, the dummy variable 
approach is the most common and effective way of dealing with floating 
holidays (Hyndman, 2013). However, Enders and Li (2015) specify three 
conditions for the validity of the dummy variable approach: (1) the date 
of the event is exogenous and known; (2) the impact of the event on the 
trend is immediate; (3) the event occurs at a single point in time and has 
a unique impact on the trend. In the context of tourism demand analysis, 
the validity of these three conditions is questionable. First, as stated 
earlier, although such holidays have known and exact dates on the 
calendar, the dates float around in the calendar. Second, the impact of 
holidays on tourist flows is not immediate. Quite often, a bell-shaped 
pattern emerges in tourism demand data around holidays (Kirillova & 
Lehto, 2015). Lastly, the impact of floating holidays interlocks with 
trends in low or peak seasons, which offsets or amplifies their influence. 
Therefore, the dummy variable approach may not be ideal for dealing 
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with floating holidays in tourism forecasting. 

2.2. Pattern recognition 

Patterns are an important subject in many disciplines, such as 
biology, psychology, medicine, marketing, computer vision, artificial 
intelligence, and remote sensing. Watanabe (1985) defines a pattern as 
the “opposite of a chaos; it is an entity, vaguely defined, that could be 
given a name.” A pattern can be a curve, a point in multidimensional 
space, a fingerprint image, a signature, or a human face. In past decades, 
pattern recognition techniques have advanced dramatically due to the 
availability of large databases, increased calculation speed and estima
tion accuracy, and reduced cost of data management (Jain, Duin, & Mao, 
2000). This technique has been frequently adopted in numerous fields, 
including the analysis of DNA sequences (Brubaker, Bonham, Zanoni, & 
Kagan, 2015; Harding et al., 2017); the recognition of faces (Fagan, 
2017), fingerprints (Jain, Arora, Cao, Best-Rowden, & Bhatnagar, 2016), 
and signatures (Galbally et al., 2015); the recognition of speech (Afou
ras, Chung, Senior, Vinyals, & Zisserman, 2018), images (Zoph, Vasu
devan, Shlens, & Le, 2018), and characters and documents (Fujisawa, 
2008); and the forecast of future values such as stock market trends (Liu 
& Kwong, 2007), electricity prices (Lora, Santos, Expósito, Ramos, & 
Santos, 2007), and solar radiation (Ghofrani, Azimi, & Youshi, 2019). 
The general process of pattern recognition involves three steps: data 
acquisition, pattern extraction, and pattern classification (Asht & Dass, 
2012). The acquisition step retrieves the data and converts it into a 
structural format which is acceptable to computing devices. The pattern 
extraction step analyzes the converted structural data and extracts the 
potential patterns from the data. The pattern classification step cate
gorizes the extracted patterns and applies the patterns in practice. 

Throughout the applications of pattern recognition, various methods 
exist for the extraction and classification of patterns. These methods 
have advantages and disadvantages in specific contexts (see Asht and 
Dass (2012) for a methodological review). Despite the diversity of fields 
that use pattern recognition, there is a general trend for patterns to be 
represented as multiple features or measurements and as points in a 
multi-dimensional space (Jain et al., 2000). The essence of pattern 
recognition is classifying or categorizing points in this 
multi-dimensional space. There are two main types of classification in 
the literature: supervised classification, in which input patterns are 
identified as members of predefined classes, and unsupervised classifi
cation (e.g., clustering), in which patterns are assigned to hitherto un
known classes (Watanabe, 1985). The nearest neighbor (NN) algorithm 
(Cover & Hart, 1967) is a generic supervised classification method, 
which is used to determine the similarity between a target point and 
stored points in multi-dimensional space and to predict the character
istics of the target point according to several NN points (Huang, Lin, 
Huang, & Xing, 2017). The NN algorithm is frequently used in the 
forecasting literature, and multiple (k) neighbors are usually considered 
in the model. Lora et al. (2007) utilize a weighted-NN algorithm to 
forecast electricity prices in Spain. In this algorithm, the number of 
nearest neighbors and the window length of neighbors are determined 
by the minimization of training set forecast error, and forecasts of 
electricity prices are determined by the linear combination of the 
next-day prices of the chosen neighbors. Shelke and Thakare (2014) 
adopt a k-NN algorithm to classify daily electricity load data in India 
between 2012 and 2013 and generate load forecasts from the classified 
data using the Holt-Winters model. Cai et al. (2016) refine the k-NN 
algorithm by incorporating spatiotemporal correlations in a multistep 
model and generate forecasts of short-term traffic. 

In the tourism demand forecasting context, Kamel, Atiya, El Gayar, 
and El-Shishiny (2008) investigate the accuracy of traditional forecast 
techniques and machine learning methods using annual tourist arrivals 
in Hong Kong, and reveal the reasonable predictive power of the k-NN 
algorithm, with a performance just below that of the generalized 
regression neural network model. Höpken, Ernesti, Fuchs, Kronenberg, 

and Lexhagen (2017) identify the superior performance of the k-NN 
model compared with linear regression in the forecast of monthly tourist 
arrivals at a Swedish mountain destination. Díaz and Mateu-Sbert 
(2011) provide point and sign forecasts of daily airport arrivals in 
Mallorca, using several types of k-NN model, and these algorithms 
demonstrate satisfactory forecasting ability. Following Díaz and 
Mateu-Sbert (2011), Olmedo (2016) confirms the nonlinear dynamics of 
daily airport arrivals in Mallorca, and validates the use of k-NN models 
in point and sign forecasts. Deviating from these preceding studies, 
where the dimension parameters and number of neighbors are opti
mized within the model, Rice, Park, Pan, and Newman (2019) set the 
embedding dimension according to the seasonality cycle (12 for 
monthly data) and the number of neighbors to three in their forecast of 
monthly campsite demand in US national parks. Four forecasting 
methods (moving average, Holt-Winters exponential smoothing, sea
sonal ARIMA, and neural network autoregression) are used for perfor
mance comparison. The results show, however, that the k-NN algorithm 
provides merely fair predictions, and is outperformed by seasonal 
ARIMA and exponential smoothing in three-, six-, and 
twelve-month-ahead forecasts (Rice et al., 2019). It is evident that the 
application of pattern recognition in tourism forecasting is quite rare 
and limited to monthly or annual in frequency. Furthermore, pattern 
recognition does not show obvious superior forecasting ability in 
tourism demand, in contrast to the reliable outstanding performance 
revealed in studies in other fields. 

In the context of daily tourism demand analysis, floating holidays are 
an important factor in influencing the performance of the forecast. 
However, the investigation of floating holidays, especially at daily fre
quency, has thus far received little academic attention. This study 
therefore contributes to the tourism forecasting literature in four ways. 
First, an innovative pattern recognition method, hierarchical pattern 
recognition, is proposed for daily tourist arrival forecasting. Second, 
“floating holiday” patterns are captured using the k-NN algorithm to 
describe multiple and complicated seasonality characteristics in 
holiday-sensitive tourism demand series. Third, two ensemble steps are 
adopted in the forecasting process with one ensembles forecasts from the 
nearest patterns and the other ensembles forecasts from different time 
window lengths. Lastly, different forecasting horizons, from one to 14 
days ahead, are examined separately to verify the forecasting ability of 
the proposed method. 

3. Methodology 

A hierarchical pattern recognition forecasting method is proposed in 
this study to forecast daily tourism demand. There are three hierarchies 
in this method (Fig. 1). In Tier 1, calendar pattern of the current date is 
recognized and compared with all historical data. Historical data with 
same the calendar pattern are pulled out in preparation for the next tier. 
In this tier, both the regular calendar patterns and the floating holiday 
patterns are integrated into the algorithm. In Tier 2, multiple time 
windows are utilized to construct tourism demand pattern of the current 
date. In each time window, the k-NN algorithm is used to identify two 
nearest neighbors from the pool prepared in Tier 1. In Tier 3, in each 
time window, the observations of the two nearest neighbors are linearly 
combined to generate one forecast value. The forecast values in all time 
windows are then ensembled to generate the final forecast. 

In this section, the k-NN algorithm is firstly introduced as the basis of 

Fig. 1. Framework of hierarchical pattern recognition forecasting method.  
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the proposed method. The HPR forecasting method is then discussed. 
Benchmark models and forecasting accuracy evaluation methods are 
introduced at the end of the section. 

3.1. k-Nearest neighbor algorithm 

The k-NN algorithm is the proposed method for recognizing patterns. 
According to the k-NN algorithm, a tourist arrival series of time length m 
can be considered as a tourism demand pattern of time window m and be 
treated as one point in m-dimensional space. By rolling the time window 
on the tourist arrival series, multiple points can be extracted. Taking the 
point with the newest date as the current point and all other points as 
historical points, the distances between the current point and historical 
points in m-dimensional space can be measured to determine the simi
larity of the current tourism demand pattern to historical tourism de
mand patterns. The k neighbors with the highest similarity (the smallest 
distances) are selected and the future tourism demand values of these 
neighbors collectively generate the forecast of tourism demand. Fig. 2 
illustrates the framework of the k-NN algorithm. 

In Fig. 2, a(t) indicates the tourism demand at time t. The length of 
the time window is denoted by m, and {a(t-m+1), …,a(t-1),a(t)} repre
sents the current pattern for time t, denoted as A(t,m). All of the patterns 
with the same length in the data stream, A(t-1,m) to A(m,m), are 
considered as the historical patterns. Neighbors are searched among the 
historical patterns, and k patterns with highest similarity to the current 

pattern are chosen as the nearest neighbors of the current pattern A(t,m). 
The future tourism demand at time t+1 can be derived by the linear 
combination of these nearest neighbors. 

Similarity determination. With a given time window m, similarity 
between the current pattern, A(t,m), and historical pattern, A(h,m), can 
be determined by the Euclidean distance between the points in m- 
dimensional space (Díaz & Mateu-Sbert, 2011; Lora et al., 2007; Rice 
et al., 2019). Due to the temporal trend feature of tourism demand data, 
however, direct measurement of the Euclidean distance between the 
current and historical patterns could be misleading. Thus, relative 
Euclidean distance (RED) is adopted to diminish the effect of trend when 
measuring the similarity between patterns. In particular, the current 
pattern is detrended as follows: 

φ(A(t,m)) ≡ {[a(t − m+ 1) − L(A(t,m))], ..., [a(t) − L(A(t,m))]}

where the trend term, L(A(t,m)), is defined by 

L(A(t,m)) ≡
[a(t − m + 1) + ⋅⋅⋅ + a(t − 1) + a(t)]

m 

The RED between the current pattern A(t,m) and historical pattern A 
(h,m) is then calculated by: 

RED(A(t,m),A(h,m))≡ ‖ φ(A(t,m)) − φ(A(h,m)) ‖

and the similarity between the current pattern A(t,m) and historical 

Fig. 2. The framework of the k-NN algorithm.  
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pattern A(h,m) is computed as: 

S(A(t,m),A(h,m))= e− RED(A(t,m),A(h,m))

Forecast generation. Neighbors of the current pattern can be chosen by 
evaluating the similarity, S(A(t,m),A(h,m)), between the current pattern 
and all historical patterns. The value of k is set to 2 in this study 
following Höpken et al. (2017); that is, the two nearest neighbors are 
selected and combined to generate the forecast of future tourism de
mand. In particular, the forecast of tourism demand at time t+1 is 
determined by the weighted arithmetic operator (Xu & Da, 2003), which 
is the weighted average of the future values of the two nearest neighbors 
adjusted by their trend values: 

a∧(t+ 1,m)=w(h1, h2)[a(h1 + 1)+ L(A(t,m)) − L(A(h1,m))]

+ (1 − w(h1, h2))[a(h2 + 1)+ L(A(t,m)) − L(A(h2,m))]

where A(h1,m) and A(h2,m) are the two nearest neighbor patterns of the 
current pattern A(t,m). The weighting, w(h1,h2), follows the formulation 
of relative weighting in information science and decision-making liter
ature (e.g. Hu, Ren, Lan, Wang, & Zheng, 2014; Lan, Hu, Ye, & Sun, 
2012; Lan, Zou, & Hu, 2020; Xu, 2015), and is calculated by the 
similarity: 

w(h1, h2)=
e− RED(A(t,m),A(h1 ,m))

e− RED(A(t,m),A(h1 ,m)) + e− RED(A(t,m),A(h2 ,m))

3.2. Hierarchical pattern recognition forecasting method 

The proposed HPR forecasting model has three tiers. In the first tier, 
the calendar patterns of the historical data are recognized and stored. 
This tier helps to identify work days and holidays in the data stream so 
that work days, regular weekends, and floating holidays can be treated 
accordingly in the forecasting process. The second tier recognizes the 
tourism demand pattern of work days and holidays (both weekends and 
floating holidays) in the data stream and generates forecasts of future 
tourism demand. The third tier integrates the future values of the nearest 
neighbors with different time windows and generates the forecast value. 

Calendar pattern recognition. Daily tourism demand is significantly 
affected by holidays, including weekends and floating holidays. The 
patterns of tourism demand during holidays are different from those 
during weekdays. Therefore, identifying holidays (both weekends and 
floating holidays) is essential for the proposed HPR method. In the 
current method, work days are denoted as “1” and holidays (including 
weekends and floating holidays) are denoted as “0.” Because a typical 
week consists of five work days and two weekend days, a consecutive 
five-day calendar pattern is always considered in the proposed method. 
Because travel planning relates to not only the previous and current 
situations, but also the upcoming schedule, the calendar pattern of the 
target date consists of the work day/holiday status for the two days 
before and two days after the target. A sample calendar pattern for 
forecasting the tourism demand of the first day of a three-day holiday is 
shown in Fig. 3. 

Here in Fig. 3, to forecast the tourism demand at time t+1, the cal
endar pattern (1,1,0,0,0) is examined. The pattern recognition process is 
only conducted on historical tourism demand patterns with the same 
calendar pattern, such as (h1-2, h1-1, h1, h1+1, h1+2) and (h2-2, h2-1, h2, 
h2+1, h2+2) in Fig. 3. 

The calendar pattern recognition tier incorporates the floating holi
day feature into the proposed method. Since the calendar pattern of the 
current date is compared with those of all historical data, the patterns 

may not be selected at a regular time interval. This relaxes the 
assumption of seasonality in time-series analysis, where the seasons 
occur regularly throughout the year. In addition, together with the 
different time windows adopted in the later tiers of the hierarchy, the 
proposed method facilitates the analysis of the overlapping effect of 
different levels of seasonality. By recognizing calendar patterns, the 
proposed method explicitly takes the time constraints of the tourists into 
consideration and integrates this information into the forecasting 
process. 

Setting time windows. Typically, only one time window is selected in 
the k-NN algorithm to reflect the most influential seasonality cycle (e.g. 
Díaz & Mateu-Sbert, 2011; Olmedo, 2016; Rice et al., 2019). However, 
as mentioned earlier, daily tourism demand may be influenced by sea
sonality with different frequencies. In the proposed method, time win
dows from 2 days up to 28 days (m = 2 to 28) are jointly considered to 
account for interlocking seasonality at different frequencies. The fore
casts of different time windows, ȃ(t+1,m), are aggregated with recip
rocal weightings to give the final forecast of tourism demand for day 
t+1: 

a∧(t+ 1)=
∑28

m=2
w(m)a∧(t+ 1,m)

with 

w(m)=
1
m

∑28
s=2

1
s

,m = 2, 3, ..., 28 

The complete framework of the proposed HPR method is given in 
Fig. 4. 

3.3. Benchmark models 

Six models are used as benchmarks to evaluate the forecast perfor
mance of the proposed method. These include four time series models: 
the seasonal naïve model, seasonal autoregressive integrated moving 
average (SARIMA) model, exponential smoothing model (ETS), and 
exponential smoothing state space model with Box-Cox transformation, 
ARMA errors, trend, and seasonal components (TBATS). The other two 
are a time series model with intervention (SARIMA with explanatory 
variable, SARIMAX) and pattern recognition model (simple k-NN). 

3.3.1. Seasonal naïve 
In a seasonal naïve model, future forecasts are simply equal to the 

most recent available value in the corresponding season (Athanaso
poulos, Hyndman, Song, & Wu, 2011). For weekly data, ̂yt = yt− s, where 
y is the tourism demand, ŷt is its forecast, t refers to time, and s is 7. 

3.3.2. Seasonal auto-regressive integrated moving average (SARIMA) 
The SARIMA model belongs to the ARMA family originally proposed 

by Box and Jenkins (1970). It integrates an autoregressive (AR) 
component, a moving-average (MA) component, and seasonality into 
one model and has gained popularity in recent years (Song et al., 2019). 
A general SARIMA model is specified as ARIMA(p,d,q)*(P,D,Q)S, where 
p is non-seasonal AR order, d is non-seasonal differencing, q is 
non-seasonal MA order, P is seasonal AR order, D is seasonal differ
encing, Q is seasonal MA order, and S is the time cycle of the seasonal 
pattern. For daily tourism demand forecasting, we set S = 7. The auto. 
arima() function of the “forecast” package (Hyndman et al., 2019) in the 
R software is utilized, which uses the Box-Jenkins approach to deter
mine the optimized parameters. 

3.3.3. SARIMAX model 
As an extension of the SARIMA model, the SARIMAX model further 

includes exogenous variables in the modeling process. In this study, the 
exogenous variables included are dummy variables for holidays. The Fig. 3. Sample of calendar pattern recognition.  
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SARIMAX model is examined here because it has been noted that aug
menting time series models with additional explanatory variables often 
improves forecasting accuracy (Wu et al., 2017). 

3.3.4. Exponential smoothing (ETS) 
ETS uses the average of past observations with exponentially 

decreased weights (Hyndman & Athanasopoulos, 2018). Holt (2004) 
first incorporated trend into simple exponential smoothing. The ETS 
method further develops this approach by including level, trend, sea
sonality, and smoothing (Hyndman & Athanasopoulos, 2018). The 
Holt-Winter method has two formats: additive and multiplicative. The 
additive model assumes a constant degree of seasonality; the multipli
cative method assumes seasonality involves a multiplicative relationship 
between the trend, seasonality, and irregularity in the series. The gen
eral ETS model can be written as ETS (e, t, s), where e denotes the error 
type (“A,” “M,” or “Z”) with “A” for additive error, “M” for multiplicative 
error, and “Z” for automatically selecting the type of error. t denotes the 
trend type (“N,” “A,” “M,” or “Z”) with “N” for no trend, “A” for additive 

trend, “M” for multiplicative trend, and “Z” for automatically selecting 
the type of trend. s denotes the seasonality type (“N,” “A,” “M,” or “Z”) 
with “N” for no seasonality, “A” for additive seasonality, “M” for mul
tiplicative seasonality, and “Z” for automatically selecting the type of 
seasonality. The ets() function of the “forecast” package (Hyndman 
et al., 2019) in the R software is utilized to determine the parameters 
automatically. 

3.3.5. Exponential smoothing state space model with Box-Cox 
transformation, ARMA errors, trend, and seasonal components (TBATS) 

De Livera, Hyndman, and Snyder (2011) extend the exponential 
smoothing method and develop an exponential smoothing state space 
model with Box-Cox transformation, ARMA errors, trends, and seasonal 
components (TBATS) to forecast high frequency time series with com
plex seasonal patterns, such as daily or higher frequencies. After setting 
the seasonality of time series with the msts() function in the “forecast” 
package (Hyndman et al., 2019) in the R software, the TBATS() function 
can be used to fit the figure automatically. Hyndman (2013) states that 

Fig. 4. The framework of the hierarchical pattern recognition method.  
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when the time series is long enough to take in more than a year, it is 
necessary to allow for annual and weekly seasonality. Thus, both 7 days 
and 365.25 days are taken as the periods of daily tourism demand. 

3.3.6. Simple k-NN 
To further examine the effectiveness of the calendar pattern recog

nition tier of the proposed method, a classical pattern recognition 
model, simple k-NN, is also included as a benchmark model. The 
parameter settings of the simple k-NN algorithm follow the same settings 
adopted in the proposed HPR method, with k set to 2 and the nearest 
neighbors linearly combined. The calculation of the simple k-NN algo
rithm follows the description in Section 3.1 and is done in the R software 
with kknn() in the Weighted k-Nearest Neighbors Classification and 
Clustering (kknn) package (Schliep, Hechenbichler, & Lizee, 2016). 
Table 1 summarizes the variables, optimization criteria, and estimation 
methods adopted in the benchmark models and the proposed HPR 
method. 

3.4. Forecasting accuracy assessment 

To evaluate the forecast accuracy of the proposed HPR method and 
the benchmark models, the mean absolute percentage error (MAPE) and 
mean absolute scaled error (MASE) are calculated: 

MAPE =
1
n
∑n

i=1

⃒
⃒
⃒ai − âi

⃒
⃒
⃒

ai  

MASE =
1
n

∑n

i=1

⃒
⃒
⃒ai − âi

⃒
⃒
⃒

1
T− 1

∑T
t=2|at − at− 1|

where âi and ai denote the forecast value and actual value of tourism 
demand, respectively. Smaller values of assessment measures indicate 
better forecasting performance of the associated models. Other forecast 
accuracy measurements, such as mean absolute error (MAE), mean 
squared error (MSE), root mean squared error (RMSE), and root mean 
squared percentage error (RMSPE), are also available upon request. 

4. Data description 

This study examines visitor arrivals for three famous tourism at
tractions in China: these are two 5A tourist attractions, Jiuzhaigou 
Valley in Sichuan province and Kulangsu in Fujian province, and one 4A 
tourist attraction, Siguniang Mountain in Sichuan province. Daily tourist 
arrival data are obtained from the management office of the attractions 

or their official websites. Public holidays and weekends are identified 
according to notices from the Chinese government. 

Based on data availability, daily data for these attractions are 
collected for the periods of June 1, 2012–June 30, 2017; July 1, 
2017–June 30, 2019; and September 25, 2015–November 30, 2018, 
respectively. Fig. 5 shows the time series plots for visitor arrivals at these 
three attractions, and significant seasonality characteristics can be 
observed in these time series. 

For forecasting accuracy comparison, all data for each tourist 
attraction are divided into two parts: a training dataset and test dataset. 
The most recent half-year of data is used as a test dataset for forecasting 
accuracy evaluation, and the remainder is used as a training dataset for 
modeling. For each attraction, 14 forecasting horizons are examined and 
compared separately from one day ahead to two weeks ahead using 
increasing rolling windows. 

5. Empirical results 

5.1. Tourism demand patterns of the three attractions 

Fig. 6 presents three major tourism demand patterns extracted from 
the data of each tourism attraction: weekend (two days holiday), long 
weekend (three days holiday), and the golden week (seven days holi
day). The red round dots represent holidays and the blue square dots 
represent work days. It should be noted that the tourism demand pat
terns in Fig. 6 are based on detrended arrivals hence negative numbers 
exist. 

The tourism demand patterns of weekends are quite similar in all 
three tourism attractions, with arrivals peaking on Saturday. This re
flects the phenomenon that many tourists leave their homes on Friday 
after work and start the holiday right away on Saturday. On Sunday, 
however, due to work obligations on Monday, tourists may participate 
in less intense activities and prepare back home. 

Regarding long weekends and golden weeks, similar patterns are 
observed in that the volume of tourist arrivals decreases as the end of the 
holiday draws near. However, in contrast to weekend patterns, the 
volume of tourist arrivals is not instantly high at the beginning of the 

Table 1 
Models, variables, optimization criteria and estimation method.  

Model Variables Optimization 
criteria 

Estimation method 

Seasonal 
Naïve 

Daily 
arrivals 

NA Modeling weekly seasonality 
characteristics 

SARIMA Daily 
arrivals 

Minimum AICc Maximum likelihood 

SARIMAX Daily 
arrivals; 
Holiday 
dummy 

Minimum AICc Maximum likelihood 

ETS Daily 
arrivals 

Minimum AICc Maximum likelihood 

TBATS Daily 
arrivals 

Minimum AIC Maximum likelihood 

k-NN Daily 
arrivals 

Minimum 
Distance 

combination over nearest 
patterns 

HPR Daily 
arrivals; 
Holiday 
dummy 

Minimum 
Distance 

combination over nearest 
patterns; ensemble over time 
windows  

Fig. 5. Time series plots of daily visitor arrivals.  
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holiday. For Jiuzhaigou Valley and Siguniang Mountain, it takes around 
two days for the tourist arrivals to reach their peaks, whereas the in
crease takes around one day for Kulangsu. This may be due to the fact 
that as the length of the holiday increases, tourists can enjoy a more 
relaxed journey to the attractions instead of rushing to them. Nonethe
less, some differences are identified in the tourism demand patterns of 
Kulangsu in comparison with those in Jiuzhaigou Valley and Siguniang 
Mountain. In Kulangsu, the volume of tourism arrivals reaches the peak 
level on the second day and remains relatively constant throughout the 
remainder of the holiday. In contrast, the tourism demand patterns in 
Jiuzhaigou Valley and Siguniang Mountain fit more of a bell-shaped 
curve. This observation can be explained by two features of Kulangsu 
in terms of transportation and hotel arrangements. Kulangsu has easier 
access by airplane or high-speed rail, whereas Jiuzhaigou Valley and 
Siguniang Mountain require long distance coach travel after a flight or 
rail journey. In addition, Kulangsu has hotels within the attraction, 
whereas in Jiuzhaigou Valley and Siguniang Mountain, tourists have to 
stay outside of the attraction areas. 

The above tourism demand patterns extracted from the data can 

assist the understanding of characteristics of the tourism attractions. The 
attraction management offices can utilize these patterns to generate 
accurate forecasts on tourist arrivals and, together with other social and 
economic concerns, to establish effective strategies for operations and 
marketing. 

5.2. Daily tourism demand forecast of three attractions 

Table 2 shows the point forecasting performance for the Jiuzhaigou 
Valley tourism attraction. Both MAPEs and MASEs indicate consistent 
conclusions. Among the six benchmarks, it can be generally observed 
that the seasonal naïve model and k-NN algorithm give the poorest 
forecasts with the average MAPEs of 0.4540 and 0.4837 respectively and 
average MASEs of 1.7411 and 2.8689 respectively. In addition, as we 
expected, SARIMA with holiday dummies consistently outperforms 
SARIMA without holiday dummies, with average MAPEs of 0.3914 and 
0.4119 respectively and average MASEs of 1.4423 and 1.5064 respec
tively. TBATS is the most accurate among the six benchmark models, 
with average MAPEs of 0.3265 and average MASEs of 1.2588. This may 

Fig. 6. Tourism demand pattern in different kinds of holidays.  

Table 2 
Forecasting performance for Jiuzhaigou Valley.   

MAPE MASE 

Forecast 
horizon 

Weekly 
Naïve 

k-NN SARIMA SARIMAX ETS TBATS HPR Weekly 
Naïve 

k-NN SARIMA SARIMAX ETS TBATS HPR 

1 0.4003 0.2141 0.2065 0.1972 0.1784 0.1729 0.1482 1.5559 1.5922 0.7966 0.7705 0.7351 0.7134 0.5096 
2 0.3975 0.2641 0.2642 0.2423 0.2445 0.2184 0.1880 1.5519 1.9757 0.9856 0.9251 0.9944 0.8608 0.6600 
3 0.3975 0.2783 0.3114 0.2868 0.2906 0.2618 0.2000 1.5539 2.1052 1.1496 1.0860 1.1550 1.0056 0.7335 
4 0.3931 0.2891 0.3407 0.3206 0.3084 0.2871 0.2321 1.5507 2.2140 1.2496 1.2037 1.2493 1.1004 0.8252 
5 0.3883 0.3552 0.3629 0.3482 0.3281 0.3106 0.2532 1.5482 2.5177 1.3546 1.3041 1.3507 1.1882 0.8862 
6 0.3834 0.3722 0.3836 0.3736 0.3592 0.3246 0.2704 1.5465 2.5890 1.4442 1.3964 1.4688 1.2453 0.9690 
7 0.3808 0.4091 0.4124 0.3997 0.4052 0.3369 0.2934 1.5455 2.6991 1.5329 1.4822 1.5685 1.2918 1.0387 
8 0.5220 0.4768 0.4421 0.4287 0.4360 0.3549 0.3087 1.9042 2.9008 1.6052 1.5515 1.6272 1.3408 1.1111 
9 0.5209 0.5293 0.4705 0.4471 0.4724 0.3693 0.3139 1.9199 3.1571 1.7001 1.6170 1.7315 1.4107 1.1415 
10 0.5205 0.5989 0.4852 0.4657 0.4861 0.3800 0.3269 1.9403 3.3705 1.7440 1.6862 1.7499 1.4645 1.1586 
11 0.5157 0.6602 0.5067 0.4822 0.5276 0.3848 0.3344 1.9379 3.5410 1.8215 1.7459 1.8901 1.4816 1.1992 
12 0.5135 0.7106 0.5191 0.4928 0.5460 0.3889 0.3537 1.9377 3.7343 1.8563 1.7794 1.9379 1.5007 1.2598 
13 0.5122 0.7856 0.5259 0.4977 0.5563 0.3907 0.3533 1.9415 3.8157 1.9053 1.8156 1.9790 1.5043 1.2945 
14 0.5098 0.8277 0.5355 0.4976 0.5546 0.3908 0.3656 1.9411 3.9520 1.9441 1.8289 1.9949 1.5152 1.3429 
Average 0.4540 0.4837 0.4119 0.3914 0.4067 0.3265 0.2815 1.7411 2.8689 1.5064 1.4423 1.5309 1.2588 1.0093  
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be attributed to its incorporation of ARMA errors, trends, and seasonal 
components in one model. 

More importantly, it can be observed that the proposed pattern 
recognition method consistently outperforms all six benchmark models 
for all forecasting horizons from one day ahead to 14 days ahead when 
both MAPE and MASE are considered. The average MAPE over all ho
rizons of the proposed pattern recognition method is 0.2815, whereas 
the average MAPEs of the six benchmark models vary from 0.3265 to 
0.4837. Similarly, the average MASE over all horizons of the proposed 
pattern recognition method is 1.0093, whereas the average MASEs of the 
six benchmark models vary from 1.2588 to 2.8689. This provides strong 
evidence that the proposed method is superior to the six benchmark 
models and is an effective method of high frequency tourism demand 
forecasting. 

Tables 3 and 4 report the forecasting performance for the other two 
tourism attractions, Kulangsu and Siguniang Mountain. Generally all 
models perform best for Kulangsu, and perform worst for Siguniang 
Mountain. Taking one-day-ahead forecasting as an example, the MAPEs 
vary from 0.0914 to 0.1787 for Kulangsu, from 0.1482 to 0.4003 for 
Jiuzhaigou Valley, and from 0.2468 to 0.5618 for Siguniang Mountain. 

When comparing models for all three attractions, the empirical re
sults indicate consistent findings, which confirms the robustness of our 
findings for daily tourism attraction demand forecasting. Our general 
observations for the three attractions are as follows: on average over all 
considered horizons, the seasonal naïve model and simple k-NN algo
rithm perform the worst among all models; the SARIMA model 
augmented by holiday dummies outperforms the original SARIMA 
model; the proposed HPR method outperforms the six benchmark 
models, indicating the effectiveness of this method for high frequency 
tourism demand forecasting. 

In the comparisons between SARIMAX and SARIMA, and between 
HPR and k-NN, the methods including the considerations of holidays 
(SARIMAX and HPR) outperform those models without such consider
ations. This observation further confirms the important role of holidays 
in daily tourism demand forecasting and validates the use of holiday 
patterns in the proposed HPR. 

When different forecasting horizons are further examined and 
compared, it is interesting to note that though our proposed method 
beats all benchmark models for all horizons in the case of Jiuzhaigou 
Valley, it does not perform the best consistently over all horizons in the 
cases of Kulangsu and Siguniang Mountain. Particularly, in the case of 
Kulangsu (in Table 3), for horizons of 1–9, the proposed HPR method is 
the most accurate model according to both MAPE and MASE. However, 
for horizons of 10–14, the MAPEs show that SARIMAX outperforms the 
proposed HPR method and is the most accurate model. The MASEs also 
show that for horizons of 10–14, the most accurate model is SARIMAX, 

followed by TBATS, with HPR ranking third. For Siguniang Mountain in 
Table 4, according to MASE, the proposed HPR method is the most ac
curate for all horizons. However, according to MAPE, the proposed HPR 
method is the most accurate for horizons of 1–11, and is the second best 
for horizons 12–14. In particular, it is outperformed by ETS for the ho
rizons of 12 and 13, and outperformed by seasonal naïve for the horizon 
of 14. 

We therefore conclude our observations as follows: firstly, the pro
posed HPR method performs the best on average over all forecasting 
horizons of 1–14; secondly, when each horizon is examined separately, 
the proposed HPR method is very promising and beats all benchmark 
models for three tourist attractions for the short-term forecasting from 
one-day-ahead to nine-day-ahead; Thirdly, when longer horizons from 
10-day-ahead to 14-day-ahead are considered, the proposed HPR 
method still produces the best forecasts outperforming other models in 
17 out of 30 cases, followed by SARIMAX (10 cases), ETS (2 cases), and 
weekly Naïve model (one case). These observations indicate that (1) 
recognizing holiday patterns plays an important role in improving daily 
tourism demand forecasting; (2) the proposed HPR method provides 
robust and promising forecasts on high frequency tourism demand data, 
in which the calendar patterns of the holidays can be reflected in the 
time-series; (3) our proposed method is especially effective for short-run 
forecasting practice. The above results are validated in terms of both 
construct validity and predictive validity (Armstrong, 2001). The 
construct validity refers to the validation of input variables, such as the 
calendar patterns of the holidays and the lagged values of tourism de
mand. In the present study, the calendar patterns of the holidays are 
verified by comparing the specifications of SARIMAX, SARIMA, HPR and 
k-NN, and the inclusion of the lagged values of tourism demand is the 
basic norm of time series analysis. The predictive validity refers to the 
accuracy of the forecasts, which is verified by the forecast performance 
comparisons between the proposed method and the benchmark models 
over 14 forecast horizons and across three tourist attractions. 

6. Conclusion 

Due to floating holidays and the multiple seasonality of daily tourism 
demand, daily tourism forecasting remains challenging. This study 
proposes an innovative pattern recognition method for daily tourism 
demand forecasting. The daily tourist arrivals from three tourism at
tractions in China are used separately for empirical validation. Fore
casting horizons from one to 14 days ahead are examined. The empirical 
results show that the proposed technique is consistently superior to the 
six benchmark methods of seasonal naïve, conventional k-NN algorithm, 
SARIMA, SARIMAX, ETS, and TBATS in short-run forecasting. There
fore, the proposed hierarchical pattern recognition method is a 

Table 3 
Forecasting performance for Kulangsu.   

MAPE MASE 

Forecast 
horizon 

Weekly 
Naïve 

k-NN SARIMA SARIMAX ETS TBATS HPR Weekly 
Naïve 

k-NN SARIMA SARIMAX ETS TBATS HPR 

1 0.1787 0.1112 0.1052 0.0983 0.1003 0.1029 0.0914 1.6450 0.8603 0.9805 0.9020 0.9335 0.9512 0.8486 
2 0.1789 0.1408 0.1494 0.1305 0.1433 0.1388 0.1091 1.6448 1.0951 1.3765 1.1924 1.3195 1.2635 1.0102 
3 0.1785 0.1538 0.1615 0.1424 0.1590 0.1521 0.1212 1.6454 1.1861 1.4890 1.3041 1.4612 1.3755 1.1260 
4 0.1762 0.1735 0.1671 0.1482 0.1741 0.1592 0.1317 1.6343 1.3490 1.5579 1.3720 1.6295 1.4565 1.2343 
5 0.1756 0.1755 0.1667 0.1483 0.1844 0.1589 0.1328 1.6307 1.3629 1.5624 1.3775 1.7261 1.4604 1.2515 
6 0.1755 0.1871 0.1657 0.1487 0.1825 0.1560 0.1349 1.6316 1.4514 1.5525 1.3797 1.7009 1.4278 1.2795 
7 0.1732 0.2037 0.1633 0.1461 0.1740 0.1539 0.1369 1.6169 1.5931 1.5322 1.3602 1.6205 1.4179 1.3109 
8 0.2198 0.2035 0.1688 0.1499 0.1871 0.1619 0.1442 2.0795 1.5879 1.5828 1.3949 1.7419 1.4927 1.3766 
9 0.2187 0.2082 0.1737 0.1531 0.1978 0.1637 0.1483 2.0716 1.6191 1.6321 1.4288 1.8453 1.5041 1.4148 
10 0.2185 0.2309 0.1739 0.1528 0.2020 0.1611 0.1577 2.0708 1.7922 1.6395 1.4302 1.9023 1.4868 1.5020 
11 0.2193 0.2291 0.1734 0.1528 0.2095 0.1645 0.1670 2.0806 1.7966 1.6398 1.4347 1.9856 1.5333 1.5836 
12 0.2186 0.2227 0.1724 0.1521 0.2180 0.1680 0.1666 2.0757 1.7368 1.6332 1.4314 2.0721 1.5574 1.5961 
13 0.2177 0.2309 0.1716 0.1507 0.2143 0.1650 0.1700 2.0683 1.8011 1.6303 1.4223 2.0384 1.5273 1.6357 
14 0.2156 0.2192 0.1713 0.1499 0.2184 0.1644 0.1771 2.0500 1.7113 1.6291 1.4165 2.0669 1.5214 1.7086 
Average 0.1975 0.1921 0.1631 0.1446 0.1832 0.1550 0.1421 1.8532 1.4959 1.5313 1.3462 1.7174 1.4268 1.3485  
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promising method of high frequency tourism demand forecasting. 
This study makes three methodological contributions. First, it in

troduces an innovative pattern recognition method, hierarchical pattern 
recognition, to daily tourist arrival forecasting. The empirical results 
demonstrate its superior forecasting ability compared with six conven
tional time series models. Second, this study provides new insights for 
dealing with “floating holidays,” and capturing the multiple and 
complicated seasonality characteristics of holiday-sensitive tourism 
demand series. Third, two ensembles are adopted in the forecasting 
process with one ensemble based on the nearest patterns and the other 
ensemble based on different time window lengths. 

The findings of this study also provide useful practical implications. 
First, considering the superior forecasting performance of the proposed 
method, practitioners at the tourist attractions can use it for short-run 
forecasting, which is the foundation for planning and marketing strat
egy formulation. For example, when extremely high tourist arrivals are 
predicted, the attraction managers should adopt relevant strategies such 
as crowd control or arranging more staff and resources in order to 
guarantee the safety of tourists and maintain visitor satisfaction levels. 
When very low tourist arrivals are predicted, price adjustment and on
line marketing strategies may be good options. Second, the special 
treatment of floating holidays and multiple seasonality is a useful tool 
that can help governments and DMOs understand and accommodate the 
fluctuation of demand. This will benefit their sustainable tourism and 
holiday arrangement policies. It is true that a high volume of tourist 
arrivals during holidays brings economic benefits to the attractions as 
well as the destinations where it is located. However, the excessive de
mand could also damage the sustainable development of natural tourism 
attractions. Therefore, when big fluctuations of tourism arrivals and 
excessive demand of attractions in holidays are predicted, the govern
ments could develop polices to protect natural attractions. Such mea
sures may include informing people of busy and less busy days, limiting 
the entry quota for admissions, and promoting some less popular sites as 
substitutes for over-crowed attractions. Third, the proposed HPR 
method could facilitate a better understanding of newly emerged tourist 
arrival patterns. Among others, the COVID-19 pandemic is having a 
severe impact on tourism. Arguably, that the tourism industry may be 
dramatically changed after the pandemic, and the proposed HPR 
method could help the governments and DMOs to quickly identify the 
post-COVID-19 tourism patterns and draft strategies and policies 
accordingly. 

The findings of this study suggest a few future research directions. 
Firstly, this study proposes a hierarchical pattern recognition method for 
high frequency tourism demand forecasting with k-NN as the recogni
tion algorithm. Future research could explore the effectiveness of 
different distance measurement scales when applying pattern 

recognition techniques. Secondly, in addition to holidays, other vari
ables such as weather conditions, search engine query, and social media 
data could be incorporated into the forecasting process for the extension 
of the proposed method. Thirdly, though the predictive superiority of 
the proposed method has been verified compared with the benchmark 
models for three tourism attractions, the performance of the proposed 
method could be further tested in more diverse contexts, such as hotels, 
destinations, or different data frequencies. Lastly, interval forecasts can 
effectively supplement point forecasts by providing further information 
on their variability and uncertainty (Li, Wu, Zhou, & Liu, 2019). 
Therefore, in future research, instead of producing point forecasting, it is 
also valuable to explore using pattern recognition techniques to produce 
accurate tourism intervals. 
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Table 4 
Forecasting performance for Siguniang Mountain.   

MAPE MASE 

Forecast 
horizon 

Weekly 
Naïve 

k-NN SARIMA SARIMAX ETS TBATS HPR Weekly 
Naïve 

k-NN SARIMA SARIMAX ETS TBATS HPR 

1 0.5618 0.4748 0.3553 0.3156 0.2565 0.2818 0.2468 2.9904 1.8492 1.4042 1.2832 1.2511 1.2956 0.9586 
2 0.5597 0.6575 0.6393 0.5470 0.4075 0.4436 0.3184 2.9863 2.3293 2.2450 2.0497 1.9499 1.8623 1.2316 
3 0.5596 0.7188 0.8658 0.7221 0.5342 0.5374 0.3761 2.9876 2.5070 2.8212 2.5841 2.5149 2.2944 1.4535 
4 0.5750 0.7136 1.0322 0.8747 0.6429 0.5758 0.4348 2.9968 2.6861 3.1295 2.9054 2.8993 2.4271 1.6149 
5 0.5741 0.6938 1.1215 0.9648 0.6568 0.5898 0.4717 3.0003 2.8506 3.2672 3.0657 3.0121 2.5077 1.7229 
6 0.5739 0.7508 1.1600 1.0236 0.6598 0.5993 0.5170 3.0015 2.7784 3.3138 3.1549 3.1885 2.5244 1.8202 
7 0.5738 0.6569 1.1779 1.0516 0.6109 0.6125 0.5620 3.0049 2.7420 3.3398 3.1863 3.1756 2.5478 1.8759 
8 0.8038 0.7538 1.2464 1.1161 0.6542 0.6824 0.6244 3.8491 2.9359 3.4564 3.2796 3.3709 2.7078 2.0557 
9 0.8029 1.0346 1.3501 1.2016 0.6994 0.7493 0.6672 3.8458 3.3255 3.5794 3.4080 3.4348 2.7948 2.2665 
10 0.8038 1.1589 1.4038 1.2571 0.7187 0.7962 0.6851 3.8508 3.5799 3.6543 3.4939 3.6221 2.9505 2.4117 
11 0.8155 1.3064 1.4672 1.3302 0.7539 0.8226 0.7365 3.8629 3.6867 3.7091 3.5804 3.6608 3.0604 2.5224 
12 0.8161 1.4194 1.5153 1.3852 0.7770 0.8431 0.7930 3.8676 3.9818 3.7458 3.6593 3.7102 3.0811 2.6740 
13 0.8178 1.2543 1.5187 1.4172 0.7854 0.8672 0.8174 3.8805 3.9569 3.7900 3.7071 3.7623 3.1802 2.7818 
14 0.8126 1.1923 1.5524 1.4598 0.8260 0.8840 0.8447 3.9036 3.9880 3.8464 3.7859 3.9058 3.2222 2.8381 
Average 0.6893 0.9133 1.1719 1.0476 0.6416 0.6632 0.5782 3.4306 3.0855 3.2359 3.0817 3.1042 2.6040 2.0163  
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